Ода нейросеткам...
habr.com/ru/company/skillfactory/blog/544040/Когда создавались первые вычислительные машины, их воспринимали только как дополнение к человеческому разуму. И до недавнего времени так и было. Программисты учили компьютеры играть в шахматы с 1960-х годов. И тогда победа у игрока-новичка уже считалась большим прогрессом. О серьёзных матчах даже не задумывались.
В 1980-х программа Belle достигла рейтинга Эло в 2250 пунктов, что примерно соответствует рейтингу мастера спорта. И с того времени развитие компьютерных шахмат вышло на совершенно новый уровень.
Сначала честь человечества не смог защитить Гарри Каспаров в 1996 году, а сегодня уже создана нейросеть с рейтингом около 5000 Эло, что в разы превосходит даже сильнейших игроков.
С цифрами рейтинга дурдомик несколько, ну да инда и хрен с ними...
Сегодня разберёмся, как работают шахматные алгоритмы и почему нейросеть Alpha Zero думает практически так же, как человек, только лучше.
Полная муйня...
В 2017 году компания Deep Mind объявила о создании нейросети Alpha Zero. Тестировать её решили на трёх самых популярных стратегических настольных играх: шахматы, го и сёги.
Обучение и подготовка нейросети отличаются от классических компьютерных движков.
Stockfish и другие движки используют для своей работы существующие дебютные базы и анализ позиций огромного количества сыгранных партий.
Alpha Zero не использует ничего, кроме правил. Ей просто дали стартовую позицию, объяснили, как ходят фигуры, и цель игры – поставить мат сопернику. И всё.
За 24 часа игры с самой собой нейросеть смогла достичь сверхчеловеческого уровня игры и по сути изобрести заново всю шахматную теорию, которую человечество по крупицам разрабатывало веками.
Тоже муйня...
Шахматная теория это по сути и есть вероятность на основе базы партий.
Можно наколотить эту базу человеками, а можно 5000 GPU. GPU быстрее.
В декабре 2018 года Alpha Zero во второй раз сразилась с самой последней версией движка Stockfish.
Исследователи провели 1000 партий с контролем 3 часа на партию плюс 15 секунд на ход. Alpha Zero одержала уверенную победу, выиграв в 155 партиях, сыграв вничью 839 партий и проиграв только 6.
Более того, Alpha Zero одерживала победу даже в партиях с форой по времени на обдумывание. Имея в 10 раз меньше времени, чем у противника, нейросеть всё равно победила в суммарном итоге. Только 30-кратная фора во времени смогла уравнять шансы и дать Stockfish примерно равную игру – 3 часа у движка и всего лишь 6 минут у нейросети.
Явные происки ZOG
Alpha Zero анализирует лишь 60 000 позиций в секунду, а тестируемая версия Stockfish – 60 млн. позиций. Для достижения аналогичных результатов анализа нейросети нужно в 1000 раз меньше ресурсов, чем движку.
Секрет успеха – в качественно другом уровне анализа. Нейросеть использует метод Монте-Карло, который высчитывает математическое ожидание комплекса ходов.
Муйня... Монте-Карла соединена с сеткой. А не сетка использует... Сколько страниц и копий тут сломано
Исследовались разные варианты и монтекарла оказалась самой для сетки.
А вот для классического движка все иначе.
quantoforum.ru/lab/1893-samyj-krutoj-sha...hok?start=120#475634However, chess programs using traditional MCTS were much weaker than alpha-beta search programs, (4, 24); while alpha-beta programs based on neural networks have previously been unable to compete with faster, handcrafted evaluation functions.
Если альфа-бета отсечение способно убрать большинство заведомо проигрышных вариантов, то проверять перспективные всё равно нужно механическим перебором, нейросеть сосредоточена на вариантах, которые ведут к улучшению позиции фигур, материальному перевесу, стеснению фигур соперника или созданию комплексных угроз, включающих матовые атаки.
И, что гораздо более важно, при оценке ситуации Alpha Zero учитывает стратегическую позицию.
Ну да, конечно
Позиционная игра – это то, что отличает нейросеть от классического шахматного движка. Ведь она подразумевает длительные игровые планы, которые часто превышают вычислительные возможности машин.
Тем не менее нейросеть умеет играть позиционно не хуже человека и при этом идеально играет тактические позиции, где преимущество достигается в течение 5 или меньше ходов.
Если идеальный тактический счет, но никакой "иксперд" не отличит "позиционную игру" от счета
Более того, нейросеть уже помогла найти теоретикам шахмат целый ряд неочевидных, но при этом очень сильных разветвлений дебютов, которые никогда не рассматривали ранее.
И чо?
Шахматы многогранны
Многие теоретики считают, что благодаря шахматным компьютерам повысился и средний рейтинг топовых шахматистов. Ведь современные тренировки включают глубокую проработку компьютерных вариантов и разбора партий движками. Средний рейтинг ведущих топ-100 шахматистов в 2000 году составлял 2644 пункта Эло, а в январе 2021 года – 2715. За 20 лет среднее значение увеличилось на 71 пункт.
Идиотизм... А инфляцию никто не думает?
Сегодня человек уже не способен соревноваться с компьютером в шахматах. Нейросеть вобрала в себя все преимущества человеческого шахматного мышления, но при этом лишена его недостатков.
Недостатков лишена таблица Налимова
Она умеет мыслить позиционно и при этом не допускает зевков и ошибок. И самое интересное в этом ситуации – шахматы для Alpha Zero являются только тестировочным полигоном, где система оттачивает навыки работы. Реальные же её цели Google не раскрывает. Поэтому здесь может быть всё что угодно: от анализа изменений климатической ситуации до создания системы идеально персонифицированной рекламы. А как вы считаете, для чего создают настолько мощную нейросеть?
ZOG создает терминатора ессно