волновые функции, что оседают в стабильные конфигурации
Периодичность начинается в рядах.
Предполагаем, что функции, описывающие элементарные частицы, сложные, не состоящие из одних только косинусов/синусов. Поэтому, для представления такой составной периодической функции подходит формула ряда Фурье
Первый вопрос. Принимаем
за реальность факт достижения вероятности 1.0 факт "осадки" такой стабильной конфигурации. Тогда, в каких частях периодической функции появляется единичная вероятность — либо
на крайних точках амплитуд, либо на
точках пересечения с осью абсцисс ? А если фазы не совпадают?
Второй вопрос. Что (какая сила) в объективной реальности поддерживает колебания этих волновых функций и не даёт им "затухать" ?
Если так, то единым движущим фактором Вселенной является
ВРЕМЯ.
Скорость течения в глобальных масштабах которого близка к нулю.
PS. Впрочем, исходя из высказываний именитых учёных о
волновом дуализме, существование "частиц" также реально.